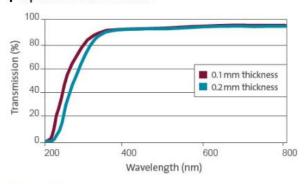
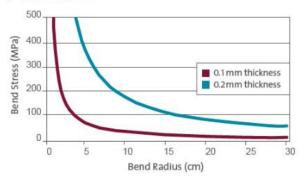
Corning® Willow® Glass


- At roughly the same thickness as a sheet of copy paper, Corning® Willow® Glass is thin enough to be flexible while retaining its superior glass attributes. Willow® Glass provides the
 inherent benefits of glass in a mechanically bendable form-factor, enabling cost-efficient device processing.
- Willow® Glass can be used in displays to make thinner and lighter portable devices such as smartphones and tablets, without sacrificing device performance or reliability. It is also an ideal material for laminate applications like kitchen backsplashes and other vertical surfaces.
- Corning's patented edge tabs enable practical use of Willow® Glass in roll-to-roll processing.

	Sheets	Rolls
Sizes	Up to 1100mm x 1200mm	Up to 1.3 m wide and 300m long
Composition	Alkali-free Borosilicate	Alkali-free Borosilicate
Thickness	100 μm and 200 μm	100 μm and 200 μm


Sample Characteristics

Bulk Properties	Metric Unit	Nominal Values
Density	g/cc	2.3 - 2.5
CTE (0° to 300° C)	ppm / °C	3 – 5
Young's Modulus	GPa	70 - 80
Poisson Ratio	_	0.20 - 0.25
Strain Point	°C	650 - 700
Annealing Point	°C	700 – 750
Dielectric Constant (k=E° /E)	-	5 - 6
Surface Roughness	Ra (nm)	< 0.5
	Rpv (nm)	< 20
Minimum Bend Radius*	mm	100 μm = 90mm
		200 μm = 180mm

Optical Transmission

Bend Stress

